

OPENC2: PROTECTING OUR FUTURE AT MACHINE SPEED

Dr. Lisa Mathews,

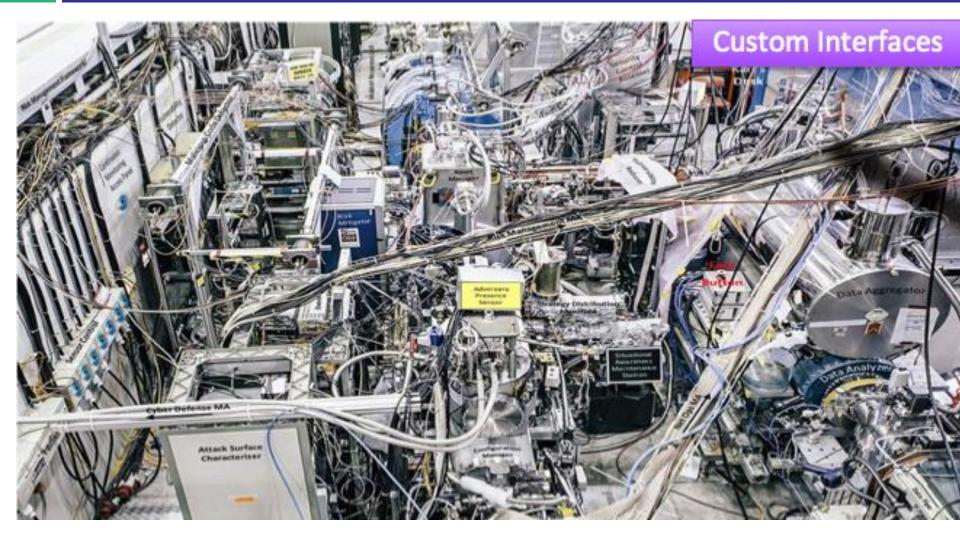
Security Engineer

Agenda

- Background
- Design Philosophy/ Principles
- OpenC2 Syntax
- OASIS Transition
- Current Plan
- Call for Participation

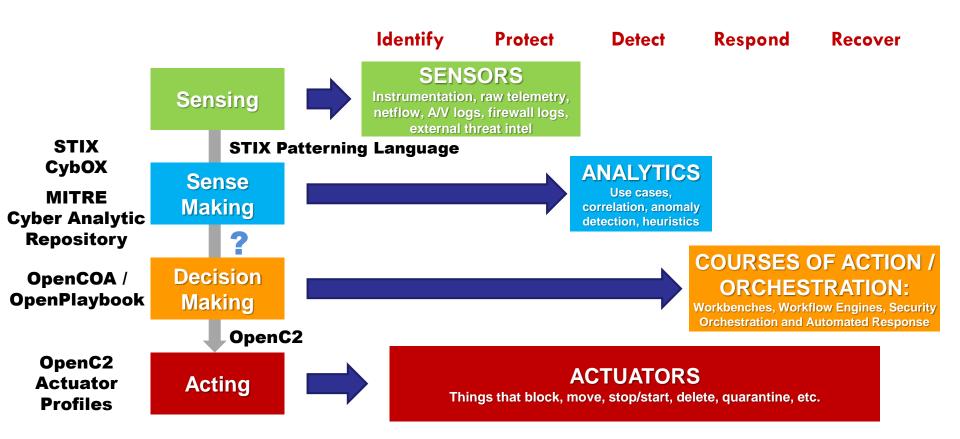
Background: The Motivation and Vision

Challenge


- Coordinated Defense in Cyber Relevant Time
- Vision: Future Cyber Defense Tactics
 - Sharing of indicators
 - Coordination of response actions
 - Automated, multi-part actions at machine speed

Strategy

- Decouple Functional Blocks and Standardize Interfaces
- Identify and fill gaps as they pertain to Cyber Threat Indicator Sharing and Response
- Participate in a diverse and collaborative environment


Standardization is a Key Enabler for Automation

Integration in the Absence of Standards

Decoupled Security Stack: Making Security More Manageable (& interchangeable)

OpenC2 at a glance

- Unambiguous Machine-to-Machine Communication
- □ Simplicity
 - Low overhead on sensor and actuator
- Focuses on 'Acting' portion of cyber defense
- OpenC2 assumes the following has been done:
 - Sensing; 'What' triggers the action
 - Analytics; 'Why'
 - Decision; 'Which' action
- OpenC2 will leverage pre-existing protocols and efforts

OpenC2 Focuses on 'Acting'

OpenC2

- Standard Threat INTEL object
- Supports Analysis
- ⊐ TAXII
 - Standard Transport protocol
 - Supports Secure Exchange
- OpenC2
 - Standard Command Language
 - Supports Automated Response

OpenC2 is part of a Suite of OASIS Standards

OpenC2 Design Principles

- Lightweight
 - Efficient machine-to-machine communications
- Abstract
 - Focuses on 'What' to do versus "Device Specific"
- Extensible
 - Extensions enable additional precision and flexibility
- □ Agnostic
 - Transport, authentication, integrity controls etc.
 - Enables flexibility with respect to implementation

Enable Unambiguous Machine-to-Machine Command and Control Messages

OpenC2 Assumptions

Basic Assumptions

- The analytics have been done
- The decision to respond has been made
- The Transmitting and Receiving entities are authorized to do so
- Assured transport

OpenC2 Parameters

10

- The Lexicon Decouples the aspects of the commands
 - ACTION: What is to be done
 - TARGET: What you are doing it to
 - ACTUATOR: Who is performing the command
- Extensions permit additional precision to the commands
 - SPECIFIER: Identifies general to specific targets or actuators
 - OPTIONS: Provide additional details for the command, target, actuator
- Benefits of decoupling
 - Facilitates integration of new technologies
 - Supports high level effects based AND device specific use case

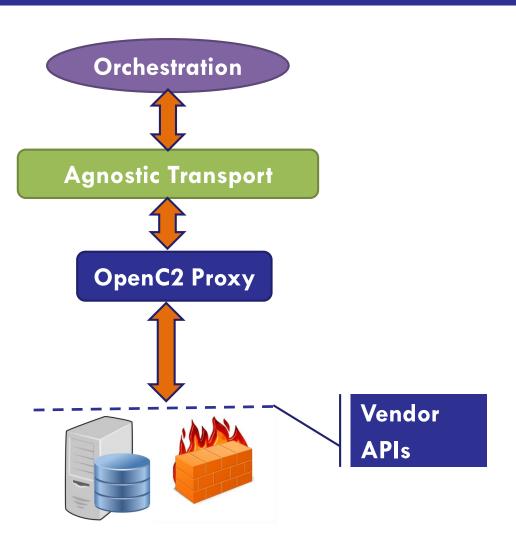
Example Actions / Targets

Actions

- 🗆 scan
- locate
- create/query/set/delete
- report
- □ notify
- deny/contain/allow
- □ start/stop/restart
- pause/resume
- detonate
- redirect
- update
- •••

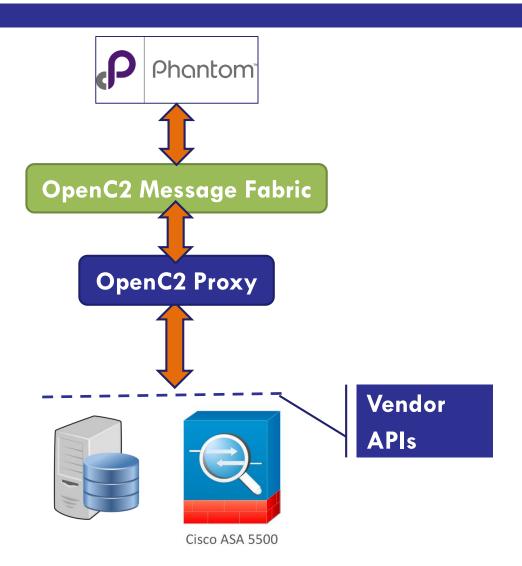
Targets

- □ device
- □ directory
- □ domain_name
- email_addr
- email_message
- □ file
- ipv4_addr/ipv6_addr
- mac_addr
- □ ip_connection
- process
- 🗆 url
- user_account
- ••••

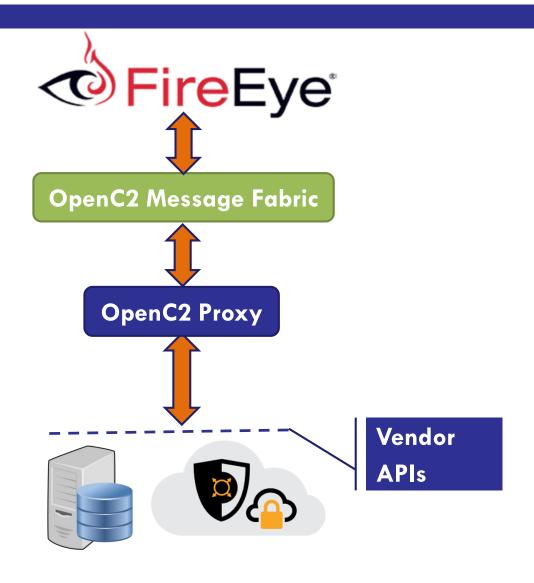

Example OpenC2 Command

Block all ftp data transfers from hosts and request ack. Note that the five-tuple is incomplete {"action": "deny", "target": { "type": "openc2:five-tuple", "specifiers": { "Layer4Protocol": "TCP", "src-port": 21 "actuator": { "type": "openc2:firewall", "specifiers": {endpoint}, "options":{ openc2: drop} }, "command-options": { {"id":"UUID=123e4567-e89b-12d3-a456-426655440000"} {response=TRUE}

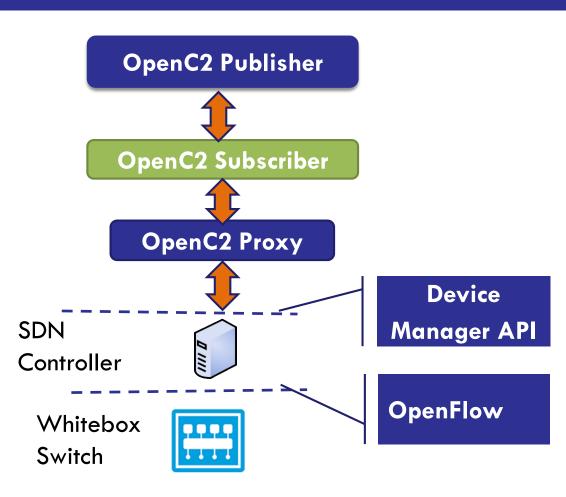
OpenC2 Use Case


- Abstract Use Case
 - Mitigate Evil Domain
 - Local Orchestrator
 - Deny Evil Domain
 - Scan evil.pdf
 - Contain Infected WS
 - Actuator executes command
- Implement across
 Agnostic Transport
 Mechanism

Prototype Implementation


14

- Orchestrators and Actuators converge on the OpenC2 message fabric
- OpenC2 'Proxy' maps to hardware API
- Converging on Message Fabric facilitates implementation

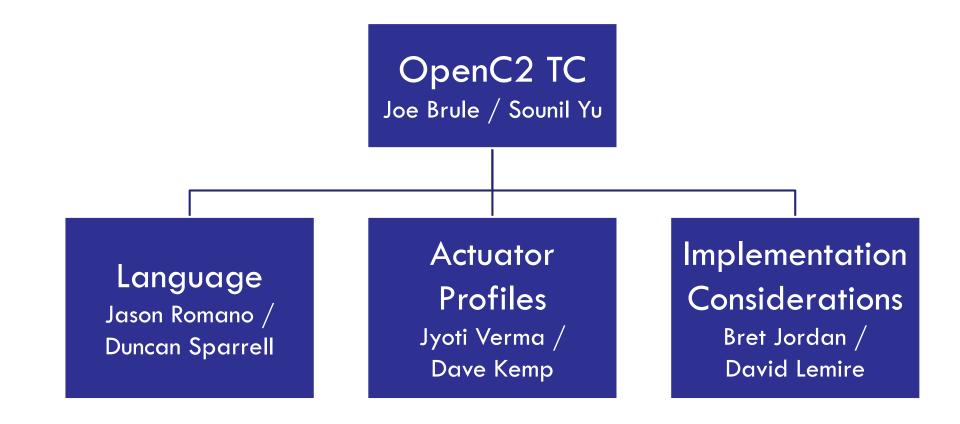

Demonstrate Vendor Agnostic

- Allows corporate wide sharing of cyber defense tactics
- Minimizes impact when changing components

Demonstrates Architecture & Technology Agnostic

- 16
- Deny Command is executed
 REGARDLESS of product
- Simplifies integration of new technologies that achieve similar actions
- Unified tactical approach independent of equipment set

OpenC2 Documentation Approach


Core Language Specification

- Actions
- Default target namespace
- Semantics, syntax
- Profile framework
- Minimum to implement
- Actuator Profiles
 - Scope and applicability
 - Required and optional actions and nuances in the context of the actuator
 - Applicable targets
 - Specifiers and options for a class of actuators
- Implementation Guides

Transition to OASIS

- □ OASIS Kickoff meeting on June 7, 2017
- OASIS Technical Committee
 - Monthly Meetings
- OpenC2 Sub-committees
 - Language SC meets weekly
 - Specification of syntax, actions and targets
 - Actuator Profile SC meets biweekly
 - Gathering of 'frenemies'
 - Implementation Considerations SC meets monthly
 - External dependencies such as IA, Transport etc.

OASIS Technical Committee Organization

Language: Proposed Work Plan

20

- Sequence of Committee Specification Drafts (CSDs)
 - November TC CSD version 0.1.0 (approved on 11/14/2017)
 - Document layout
 - Actions
 - January TC CSD version 0.2.0
 - Targets
 - Mandatory-to-Implement (MTI) Encoding (JSON) structure agreed to
 - February TC CSD version 0.3.0
 - Responses, Alerts and Modifiers
 - Address unresolved details from 0.1 and 0.2
 - March TC Committee Specification Version 1.0.0
 - Actuator Information

Profile Development Approaches

Bottom-up

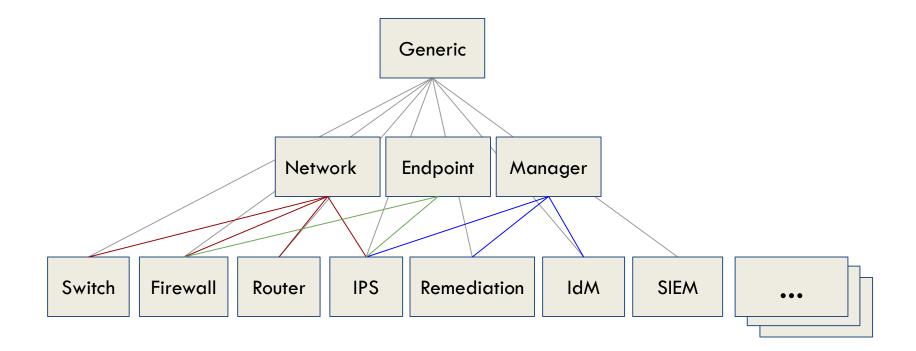
Start with full list of 30-40 actuator functions, then factor out common functionality into a higher-level profile (2nd level Endpoint / Network / Manager, or top level Generic)

□ Top-down

Start with 2nd level profiles

Split off more granular profiles as necessary

□ Actuator SC will pursue both approaches


- List of specialized actuator functions under development
- 2nd level profiles also being considered
- "Meet in the Middle"

Actuator Profile Granularity

Roadmap / lists of potential profiles:

https://docs.google.com/document/d/1nlXzQOD0xT-SMp4vfFIELvmV8AiWhmXwn8PoEjMEe3g

Successive refinement:

Implementation Considerations

- Subcommittee focuses on interoperability
 - OpenC2 Ecosystem
 - Message Transfer Mechanisms
 - Information Assurance Features
- Primarily guidance (non-normative) products
- Tracking and complementing Language and Actuator SCs

Request of the Cybersecurity Stakeholders

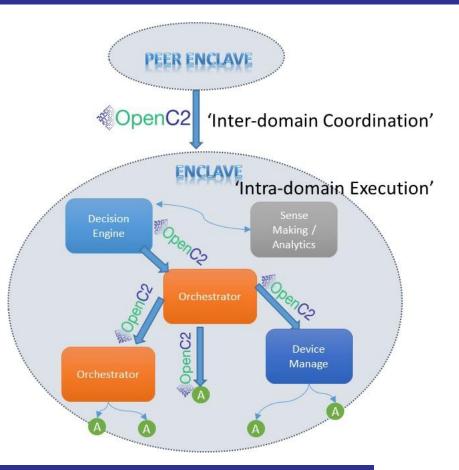
- Use Cases
 - Exercise the Language & Identify Gaps
- Actuator Profile Data Call
 - Which Actions from the Language Specification will be used?
 - Which Targets from the Language Specification do you act upon?
 - What Specifiers do you need?
 - What Options are available in your product?

We Welcome Your Support

- Please show your support on <u>https://wiki.oasis-open.org/openc2/UsersSupportingOpenC2</u>
- Ask your vendors to show their intentions on <u>https://wiki.oasis-</u> <u>open.org/openc2/ProductsWithOpenC2</u>

Questions? Comments? Complaints?

- OpenC2 Leadership
 - Joe Brule (Co-chair)
 - Sounil Yu (Co-chair)
 - Joyce Fai (Executive Secretary)
 - Duncan Sparrell (Language Subcommittee)
 - Jason Romano (Language Subcommittee)
 - Dave Kemp (Actuator Profile)
 - Jyoti Verma (Actuator Profile)
 - Dave Lemire (Implementation Considerations)
 - Bret Jordan (Implementation Considerations)
- Contact us at <u>openc2-chair@lists.oasis-open.org</u>

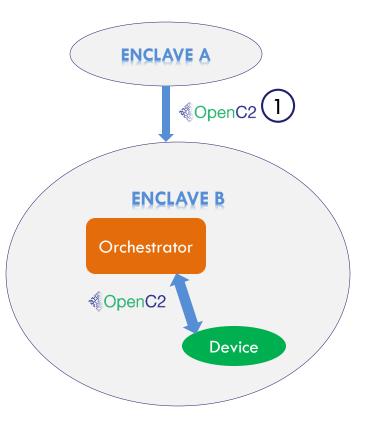


Observations

- Actuator profiles are the mechanism by which industryspecific knowledge is incorporated into the OpenC2 standard
 - Industry participation will enable success
 - Industry collaboration will define the distinction between the standard and product differentiators
- Actuators to be defined by capabilities
 - 'Hardware' based approach is redundant and does not support NFV
 - Multiple 'profiles' may be required
 - 'Foundational' profile?

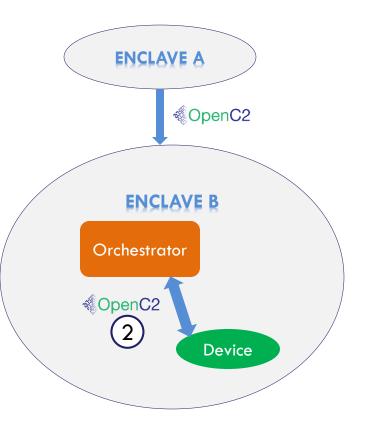
OpenC2 External Dependencies

- OpenC2 is necessary but insufficient
- OpenC2 Assumes
 - Decision has been made
 - Action is warranted
 - The command can get there intact and securely.
 - Recipient is authenticated and authorized.
- OpenC2 Focuses on the ACTING portion of cyber defense



OpenC2 Implementations will FAIL without a robust means to convey commands!

OpenC2 Assurance Threats - 1


Threats against Inter-enclave

- C2 an actor may:
 - alter C2 message to degrade or halt defensive responses,
 - send spoofed commands to open up enclave B to attack,
 - view C2 traffic to gain warning of defensive responses,
 - Disrupt network services to prevent delivery of C2 messages.

OpenC2 Assurance Threats - 2

- 2 Threats against intraenclave C2 – an actor may:
 - alter C2 messages to degrade or halt defensive responses,
 - send false commands to open up an enclave for attack,
 - Spoof C2 <u>replies</u> to disrupt defense or confuse defenders,
 - Flood devices to prevent delivery of C2 messages.

OpenC2 Derived Security Requirements

32

To combat or mitigate threats against inter- and intra-enclave cases, OpenC2 may need:

- Confidentiality ability to control visibility of OpenC2 messages to only authorized recipients.
- Integrity assurance that OpenC2 message sent is the message received
- Authorization limit sending and receiving to authorized parties only
- Authentication/Proof-of-Origin ability for all recipients to know the source of a message or identify of the sender
- Availability assurance that messages can always be sent
- Reliability assurance that messages are delivered to all intended recipients

Prototypes Posted on Github

Yuuki

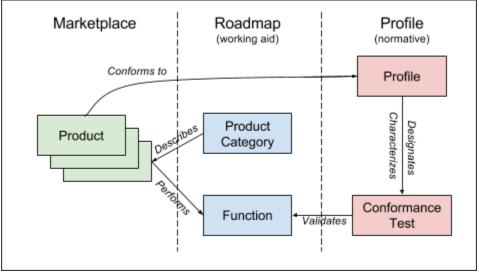
- University of Maryland
- Implements OpenC2 as multiple dispatch on type
- Actuators are dynamically created and hot swappable
- OrchID
 - Zepko
 - OpenC2 proxy built in Django
- - S-fractal
 - OpenC2 API Proxy written in ERLANG
- Pub-sub on bsd
 - **G**2
 - Implementation of OpenC2 on open source firewall written in C

Additional Prototype Efforts

- OpenDXL Message Fabric
 Joint INTEL/ G2
- Cisco ASA Prototype Implementation
 - Orchestrator issues DENY and ALLOW to Cisco ASA based on CTIA update
- Reactor Master/ Reactor Relay

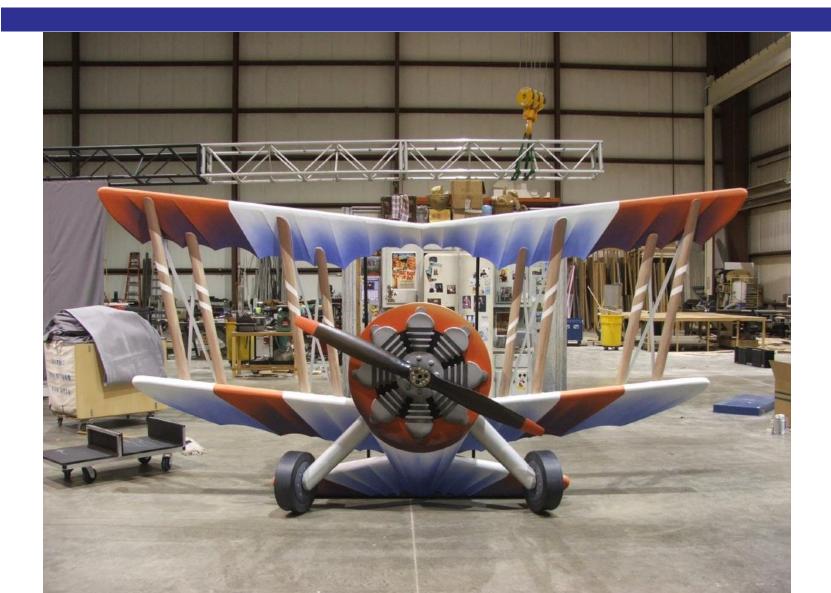
Zepko

Use of OpenC2 in inter-domain commanding use case


- IACD Course of Action Implementation
 - JHU/APL on behalf of NSA
 - 15 OpenC2 Actions issued to Nine actuators
 - Implemented in Java

Actuator Roadmap

35


Goals

- Define initial set of cyber defense functions
- Identify initial set of profiles to be developed
- Approach
 - Identify Product Categories & perform Market Survey
 - Identify the sent of functions/ features common across the category
 - Define conformance tests
 - Create Profile

OpenC2 as a **Concept**

At the Language Description Level

OpenC2 at the Actuator Profile Level

End Notes

- Contribution: Status and Way Forward Brief by Joe Brule, Executive Director, OpenC2
- Cisco[®] is a registered trademark of Cisco Systems, Inc.
- Oasis[®] is a registered trademark of Oasis, Inc.
- Yuuki © Joshua Brule
- OrchID © OpenC2
- OCAS © sFractal Consulting